

ECCC modeling activities using CICE

J.-F. Lemieux, F. Roy, F. Dupont, G. Smith...

Environment and Climate Change Canada, Dorval, Québec, Canada

ECCC ice-ocean-atmosphere forecasts

Our modeling activities are mainly in Dorval (Montréal), QC and Victoria, BC.

- short-term (Montréal)
- seasonal (Montréal and Victoria)
- climate (Victoria)

All our (Montréal) forecasting systems are based on

- GEM (Canadian atmospheric model)
- NEMO (ocean)
- CICE

Our operational systems use CICEv4.0. We are currently using CICEv5.1.2 in R&D.

Why do we need sea ice forecasting?

- Navigation (ice conditions, ice pressure)
- Emergency response (S&Rescue, oil spills)
- Planning of human activities
- Weather forecasting
- Seasonal forecasting

Ice-ocean modelling with

Applications and domains

- Global 1/4° resolution (GIOPS)
 - Medium-monthly forecasting
 - Fully-coupled for NWP
- Global 1° resolution (CanSIPS-GN)
 - Seasonal forecasting
- N. Atlantic and Arctic 1/12° (RIOPS)
 - Short-to-medium range forecasting
- East and West Coastal 1/36° (CIOPS)
- Great Lakes 2km (RMPS-GL)
- Gulf of St. Lawrence 5km (RMPS-GSL)
 - Short-term forecasting

1/36° Grand Banks

Environnement Canada

Global Ice-Ocean Prediction System (GIOPS)

- Produces daily ice-ocean analyses and 10day forecasts
 - NEMO-CICE (\sim 1/4°), < 15km in Arctic
- Mercator Ocean Assimilation System (SAM2):
 - Sea surface temperature
 - Temperature and salinity profiles
 - Sea level anomaly from satellite altimeters
- 3DVar Ice analysis:

SSM/I, SSM/IS, CIS charts, Radarsat image analyses

Purpose:

- Boundary conditions for regional systems
- Initialize seasonal forecasts
- Emergency response
- Global coupled forecasting

Regional Ice Ocean Prediction System (RIOPS)

- Produces 4x 48h forecasts per day
 - NEMO-CICE (~1/12°) with tides
- 3DVar Ice concentration analysis:
 - SSM/I, SSM/IS, CIS charts, Radarsat image analyses
- Forced by EC 10 km atmospheric forecasts and by GIOPS surface currents
- Spectral nudging to GIOPS ocean analysis
- Forecast fields:
 - ice concentration, thickness dist
 - ice velocity
 - ice pressure

Lemieux et al., QJRMS, 2015 Dupont et al., GMD, 2015

Evolution towards an NWP-like Approach to Sea-Ice Analysis/Prediction

Shlyaeva et al., QJRMS, 2016

Our recent code developments

Grounding scheme for modeling landfast ice

Mahoney et al. 2007

$$h_c = \frac{Ah_w}{k_1}$$

$$\tau_b = 0$$

if
$$h \leq h_c$$

$$\tau_b = k_2 \frac{u}{\left(|u| + u_0\right)} (h - h_c) \quad \text{if} \quad h > h_c$$

Lemieux et al., JGR, 2015

Environment Er Canada Ca

Environnement Canada Canada

Observed and simulated frequency of occurence

Environnement

Canada

Modification of rheology to enhance tensile strength

Konig and Holland, 2010

Implicit solver for the momentum equation

Canadian collaborations

- Bruno Tremblay (McGill)
- Dany Dumont (UQAR, MEOPAR)
- CONCEPT (ECCC-DFO-DND)

Our requirements and needs

- As we use NEMO, we need structured grids for our iceocean configurations.
- Important for us to have the latest developments done by the community (e.g. form drag).
- As we are going toward ensemble forecasting, we might need stochastic physics in CICE.
- Code optimization (going toward 1/12° global)

Our possible tasks with the consortium

Logo

Dynamics box (part of Dycore)

Thank you!

1D experiment

BDF2-IMEX-RK2

Environment Canada Environnement Canada Canada

RMSE (thickness) after 1 day

Environment Canada Lemieux et al., JCP, 2014

forcing

$$h_c = \frac{Ah_w}{k_1}$$

$$\tau_b = 0$$

if
$$h \leq h_c$$

$$\tau_b = k_2 \frac{u}{\left(|u| + u_0\right)} (h - h_c) \quad \text{if} \quad h > h_c$$

Canada

The model with the parameterization versus the standard model (April 2002)

SAR data assimilation

- SAR data used
 - ScanSAR Wide-A
 - •50 m pixel-spacing, 500 km swath
 - HH and HV polarizations
- Challenges
 - SAR backscatter varies with
 - Incidence angle
 - Ice type
 - Ice surface conditions
 - Wind speed (and direction) for open water
 - SAR noise floor

Comments on the development of short-term sea ice forecasting systems.

- combination of hindcast and forecast mode.
- constant comparison with obs.

Verification of forecast ice velocity

Komorov and Barber 2014

DA challenges

- SSMI/SSMIs issue with wet ice-melt ponds
- Narrow channels (large footprint and land contamination), higher uncertainty zones...
- Wind filter to eliminate spurious ice concentration retrievals from passive microwave data

Summer (July) 2014 tidal ellipse (M2) in the ice

Winter (January) 2015 tidal ellipse (M2) in the ice

Increased tensile strength to promote landfast ice in deep water

Lemieux et al., in prep.

3D-Var ice concentration analysis

- 0.045° (~ 5.0 km) resolution
- 4 analyses per day (00, 06, 12, 18 UTC)
- Analysis system (Buehner et al. 2014)
 - 3D-Var method
 - background = persistence (6 h earlier)
 - observation assimilated:
 - CIS image analyses, charts
 - SSM/I, SSM/IS
 - ASCAT
 - AMSR2
 - ice is removed where SST > 4°C
 - lce field is corrected where analysis-error estimate is high

1768 × 1618 grid points

Important physical processes 2) air-ice and ocean-ice stresses

• as Δz decreases, we need to reconsider how the iceocean stress is calculated (Roy et al. 2015).

 Ice roughness should be consistent with the one used for the atmospheric forcing (Roy et al. 2015).

• air-ice and ice-ocean stresses should take into account both the skin drag and the form drag (Lupkes et al. 2012, Tsamados et al. 2014).

Improved ice drifts with more realistic surface stresses

- NSIDC

MODEL

Roy et al. 2015

More realistic iceocean roughness reduces overestimation

Environnement Canada

Improved ice thickness with more realistic surface stresses

Correcting the ITD with the ice concentration analysis

RED: Rescaled Existing Distribution

RFT: Rescaled Forecast Tendencies

Smith et al., QJRMS, 2015

Rescaling using existing ITD (RED) or using forecast tendencies (RFT)

Smith et al., QJRMS, 2015

